ИСТОРИЯ
Станислав Улам, работая в Лос-Аламосской национальной лаборатории в 1930-е годы, изучал рост кристаллов, используя простую решёточную модель. В это же время Джон фон Нейман, коллега Улама, работал над проблемой самовоспроизводящихся систем. Первоначальная концепция фон Неймана основывалась на идее робота, собирающего другого робота.
В 1970-е получила известность двухмерная клеточно-автоматная модель с двумя состояниями, известная как игра «Жизнь». Изобретенная Джоном Конвеем и популяризованная Мартином Гарднером, она использует следующие правила: если клетка имеет двух «живых» соседей, она остаётся в прежнем состоянии. Если клетка имеет трёх «живых» соседей, она переходит в «живое» состояние. В остальных случаях клетка «умирает».
Несмотря на свою простоту, система проявляет огромное разнообразие поведения, колеблясь между очевидным хаосом и порядком. Одним из феноменов игры «Жизнь» являются глайдеры — сочетания клеток, движущиеся по сетке как единое целое. Возможно построить автомат, в котором глайдеры будут выполнять некоторые вычисления
В 1969 году немецкий инженер Конрад Цузе опубликовал книгу «Вычислимый космос», где выдвинул предположение, что физические законы дискретны по своей природе, и что вся Вселенная является гигантским клеточным автоматом. Это была первая книга из области, называемой сейчас цифровой физикой.
Клеточные автоматы в естественной среде
Некоторые живые организмы проявляют свойства клеточных автоматов. Раскраска раковин ряда морских моллюсков, например, родов Conus или Cymbiola, генерируется естественным одномерным клеточным автоматом, результат эволюции которого похож на Правило 30. Их пигментные клетки располагаются тонкой полоской вдоль края раковины. Секреция пигмента каждой клетки зависит от активирующей и ингибиторной активности соседних клеток. В процессе роста раковины полоса клеток формирует цветной узор на её поверхности.
Растения регулируют приток и отток газообразных веществ посредством механизма клеточных автоматов. Каждое устьице на поверхности листа действует как ячейка[источник не указан 277 дней].
Нейронные сети также могут быть использованы как клеточные автоматы. Сложный движущийся узор на коже головоногих является отражением паттернов активирования в мозгу животных.
Классификация
Классификация по типам поведения
Правило 40(Класс 1) со случайными начальными условиями. Как видно, информация быстро исчезает в этой системе.
Правило 3(Класс 2) со случайными начальными условиями. Очевидно появление периодических структур
Правило 18(Класс 3) со случайными начальными условиями. Видно, что начальные условия порождают хаотические движения внутри системы.
Правило 193(Класс 4) со случайными начальными условиями. Можно увидеть порождение устойчивых структур(колонка белых треугольников и взаимодействие таких структур в других частях изображения.)
Стивен Вольфрам в своей книге A New Kind of Science предложил 4 класса, на которые все клеточные автоматы могут быть разделены в зависимости от типа их эволюции. Классификация Вольфрама была первой попыткой классифицировать сами правила, а не типы поведения правил по отдельности. В порядке возрастания сложности классы выглядят следующим образом:
- Класс 1: Результатом эволюции почти всех начальных условий является быстрая стабилизация состояния и его гомогенность. Любые случайные конструкции в таких правилах быстро исчезают.
- Класс 2: Результатом эволюции почти всех начальных условий является быстрая стабилизация состояния, либо возникновение колебаний. Большинство случайных структур в начальных условиях быстро исчезает, но некоторые остаются. Локальные изменения в начальных условиях оказывают локальный характер на дальнейший ход эволюции системы.
- Класс 3: Результатом эволюции почти всех начальных условий являются псевдо-случайные, хаотические последовательности. Любые стабильные структуры, которые возникают почти сразу же уничтожаются окружающим их шумом. Локальные изменения в начальных условиях оказывают широкое, неопределямое влияние на ход всей эволюции системы.
- Класс 4: Результатом эволюции почти всех правил являются структуры, которые взаимодействуют сложным и интересным образом с формированием локальных, устойчивых структур, которые способны выживать длительное время. В результате эволюции правил этого класса могут получаться некоторые последовательности Класса 2, описанного выше. Локальные изменения в начальных условиях оказывают широкое, неопределямое влияние на ход всей эволюции системы. Некоторые клеточные автоматы этого класса обладают свойством универсальности по Тьюрингу. Последний факт был доказан для Правила 110 и игры «Жизнь».
Такого рода определения носят по большей части качественный характер и их можно по разному интерпретировать. Вот что Вольфрам говорит об этом:
Практически при всякой попытке классификации будут возникать ситуации, когда по одному свойству предмет можно отнести к одному классу, а какому-либо другому свойству — к другому классу. Такая же ситуация и с клеточными автоматами: встречаются правила, которые показывают свойства, присущие одновременно одному и другому классу.
Оригинальный текст (англ.) [показать]
Тоталистичные клеточные автоматы
Существует специальный класс клеточный автоматов, называемых тоталистичными. На каждом шаге эволюции клеточного автомата значение ячейки равно какому-либо целому числу(обычно выбираемого из конечного множества), а новое состояние клетки определяется суммой значений клеток-соседей и, возможно, предыдущим состоянием клетки. Если состояние клетки на новом шаге зависит от её предыдущего состояния, то такой клеточный автомат называется внешним тоталистичным. Игра Жизнь является примером внешнего тоталистического клеточного автомата с набором значений ячеек .
Термин тоталистичный происходит от английского totalistic. В свою очеред total может быть переведено как сумма, что и отражено в принципе действия этого типа автоматов, когда новое значение клетки зависит от суммы значений других клеток.
Связанные определения клеточных автоматов
Существует множество возможных обобщений концепций клеточных автоматов.
Клеточный автомат работающий на сетке, компонентами которой являются шестиугольники, а не квадраты(правило 34/2)
Один из них — использование сетки не с квадратами(гиперкубами в многомерном случае), а с другими геометрическими фигурами в её основе. Например, если поле представлено шестиугольным паркетом, то шестиугольники будут клетками. Однако иногда такие клеточные автоматы оказывались идентичными клеточным автоматам на сетке с квадратными клетками, только при этом было необходимо вместе специальные правила отношений с клетками-соседями. Другой способ обобщения — использование нерегулярной сетки(например, в виде Мозаики Пенроуза).
Ещё один способ — использование вероятностных правил. Такие клеточные автоматы называются стохастическими. В таких системах задается вероятность, что на следующем шаге клетка сменит свой цвет на другой. Или, например, в игре «Жизнь» добавляется правило, что клетка с определенной вероятностью может изменить свой цвет на противоположный, а другие правила этого клеточного автомата остаются без изменений.
Определение соседства клетки может меняться с течением времени и\или пространства. Например, на первом шаге соседями будут горизонтально смежные клетки, а на другом — вертикально смежные.
В клеточных автоматах на новое состояние клетки не влияют новые состояния смежных клеток. Правило можно поменять: можно сделать так, что, например, в блоках 2 на 2 состояния клеток зависят от состояния клеток внутри блока и от таких-же смежных блоков.
Существуют непрерывные клеточные автоматы. В таких системах вместо дискретного набора состояний используются непрерывные функции (обычно определяемые на промежутке ).
Свойство обратимости
Клеточный автомат называется обратимым, если для каждой текущей конфигурации существует только одна предшествующая конфигурация. Если рассматривать клеточный автомат как функцию, отображающую одну конфигурацию в другую, то обратимость предполагает биективность этой функции. Если клеточный автомат обратим, то его обратная эволюция также может быть описана клеточным автоматом. Конфигурации, не имеющие предшествующих, то есть недостижимые в данном клеточном автомате, носят название «Сады Эдема».
Для одномерных клеточных автоматов существуют алгоритмы определения обратимости или необратимости. Однако для клеточных автоматов с двумя и более измерениями таких алгоритмов нет.
Обратимые клеточные автоматы часто используют для моделирования таких физических феноменов, как динамика жидкости и газа, поскольку они подчиняются законам термодинамики. Такие автоматы специально создаются обратимыми. Такие системы изучались Томасо Тоффоли (Tommaso Toffoli) и Норманом Марголусом (Norman Margolus). Существует несколько типов обратимых конечных автоматов. Наиболее известными являются клеточный автомат второго порядка и блочный клеточный автомат. Обе эти модели следуют несколько модифицированному варианту определения клеточного автомата, однако доказано, что они могут быть эмулированы традиционным клеточным автоматом со значительно большим размером окрестности и числом состояний. Также, было доказано, что любой обратимый клеточный автомат может быть сэмулирован блочным клеточным автоматом.
Компьютерное моделирование реакции Белоусова — Жаботинского в тонком слое жидкости в чашке Петри.
Реакция Белоусова — Жаботинского представляет собой пространственно-временной химический осциллятор, который может быть смоделирован клеточным автоматом. В 1950-х годах А. М. Жаботинский, продолжая работу Б. П. Белоусова, обнаружил, что тонкий однородный слой смеси определённых химических веществ способен образовывать движущиеся геометрические узоры, такие как концентрические круги и спирали.
|